Theses are designed to replace the natural surface of the femoral head while preserving as much natural bone as possible. The device retains the diameter of the natural femoral head. The Femoral Head Resurfacing device is not cleared for use with an acetabular component in the United States.

MATERIALS

- **Substrate**: CoCrMo Alloy
- **Surfacing Coating**: Ti-6Al-4V Alloy
- **Hydroxyapatite Coating**: Calcium Phosphate

INDICATIONS

Cemented Femoral Head Resurfacing Device
1. Noninflammatory degenerative joint disease including osteoarthritis and avascular necrosis.
2. Rheumatoid arthritis

The device is a single use implant intended for use with bone cement. Press-Fit Head Resurfacing Device

Noninflammatory degenerative joint disease including osteoarthritis and avascular necrosis, and rheumatoid arthritis.

The device is a single use implant intended for press-fit application.

CONTRAINDICATIONS

Absolute contraindications include: infection, sepsis, and osteomyelitis.

Relative contraindications include: 1) uncooperative patient or patient with neuromuscular disorders who are incapable of following directions, 2) osteoporosis, 3) metabolic disorders which may impair bone formation, 4) osteomalacia, 5) distant foci of infections which may spread to the implant site, 6) rapid joint destruction, marked bone loss or bone resorption apparent on roentgenogram, 7) vascular insufficiency, muscular atrophy, or neuromuscular disease.

WARNINGS

Improper selection, placement, positioning, alignment and fixation of the implant components may result in unusual stress conditions which may lead to subsequent reduction in the service life of the prosthetic components. Malalignment of the components or inaccurate implantation can lead to excessive wear and/or failure of the implant or procedure.

Inadequate preclosure cleaning (removal of surgical debris) can lead to excessive wear. Use clean gloves when handling implants. Laboratory testing indicates that implants subjected to body fluids, surgical debris, or fatty tissues have lower adhesion strength to cement than implants handled with clean gloves. Improper preoperative or intraoperative implant handling or damage (scratches, dents, etc.) can lead to crevice corrosion, fretting, fatigue fracture and/or excessive wear. Do not modify implants. The surgeon is to be thoroughly familiar with the implants and instruments prior to performing surgery.

Care is to be taken to assure complete support of all parts of the device embedded in bone cement to prevent stress concentrations, which may lead to failure of the procedure. Complete preclosure cleaning and removal of bone cement debris, metallic debris and other surgical debris at the implant site is critical to minimize wear of the implant articular surfaces. Implant fracture due to cement failure has been reported.

Biomet® joint replacement prostheses provide the surgeon with a means of reducing pain and restoring function for many patients. While these devices are generally successful in attaining these goals, they cannot be expected to withstand the activity levels and loads of normal healthy bone and joint tissue.

Accepted practices in postoperative care are important. Failure of the patient to follow postoperative care instructions involving rehabilitation can compromise the success of the procedure. The patient is to be advised of the limitation of the reconstruction and the need for protection of the implants from full load bearing until adequate fixation and healing have occurred. Excessive activity, trauma and excessive weight have been implicated with premature failure of the implant by loosening, fracture, and/or implant. Loosening of the implants can result in increased production of wear particles, as well as accelerate damage to bone making successful revision surgery more difficult. The patient is to be made aware and warned of general surgical risks, possible adverse effects as listed, and to follow the instructions of the treating physician including follow-up visits.

Patient selection factors to be considered include: 1) need to obtain pain relief and improve function, 2) ability and willingness of the patient to follow instructions, including control of weight and activity level, 3) a good nutritional state of the patient, and 4) the patient must have reached full skeletal maturity.

PRECAUTIONS

Specialized instruments are designed for Biomet® joint replacement systems to aid in the accurate implantation of the prosthetic components. The use of instruments or implant components from other systems can result in inaccurate fit, sizing, excessive wear, and device failure. Intraoperative fracture or breaking of instruments has been reported. Surgical instruments are subject to wear with normal usage. Instruments, which have experienced extensive use or excessive force, are susceptible to fracture. Surgical instruments should only be used for their intended purpose. Biomet recommends that all instruments be regularly inspected for wear and disfigurement.

Do not reuse implants. While an implant may appear undamaged, previous stress may have created imperfections that would reduce the service life of the implant. Do not treat patients with implants that have been, even momentarily, placed in a different patient.

POSSIBLE ADVERSE EFFECTS

1. Material sensitivity reactions. Implantation of foreign material in tissues can result in histological reactions involving various sizes of macrophages and fibroblasts. The clinical significance of this effect is uncertain, as similar changes may occur as a precursor to or during the healing process. Particulate wear debris and discoloration from metallic and polyethylene components of joint implants may be present in adjacent tissue or fluid. It has been reported that wear debris may initiate a cellular response resulting in osteolysis or osteolysis may be a result of loosening of the implant. Further, there has been a report regarding an association between articulating surfaces of: 1) CoCrMo alloy on CoCrMo alloy, 2) CoCrMo alloy on polyethylene, and 3) Titanium alloy on polyethylene in hip replacements and increased genotoxicity. This report, however, did not assess either the clinical relevance of the data or make any definite conclusions as to which metal ions or interactions between metal ions or particulate metals might be responsible for the observed data. The report further cautioned that an association does not necessarily mean a causal relationship, and that any potentially increased risk associated with metal ions needs to be balanced against the benefits resulting from hip replacement.

2. Early or late postoperative infection and allergic reaction.

3. Intraoperative bone perforation or fracture particularly in the presence of poor bone stock caused by osteoporosis, bone defects from previous surgery, bone resorption, or while inserting the device.

4. Loosening or migration of the implants can occur due to loss of fixation, trauma, malalignment, bone resorption, excessive activity.

5. Periarticular calcification or ossification, with or without impingement of joint mobility.

6. Inadequate range of motion due to improper selection or positioning of components.

7. Undesirable shortening of limb.

8. Dislocation and subluxation due to inadequate fixation and improper positioning. Muscle and fibrous tissue laxity can also contribute to these conditions.

9. Fatigue fracture of component can occur as a result of loss of fixation, strenuous activity, malalignment, trauma, non-union, or excessive weight.

10. Fretting and crevice corrosion can occur at interfaces between components.

11. Wear and/or deformation of articulating surfaces.

12. Trochanteric avulsion or non-union as a result of excess muscular tension, early weight bearing, or inadequate reattachment.

13. Problems of the knee or ankle of the affected limb or contralateral limb aggravated by leg length discrepancy, too much femoral medialization or muscle deficiencies.
14. Intraoperative or postoperative bone fracture of the femoral neck and/or postoperative pain.

STERILITY
Prosthetic components are sterilized by exposure to a minimum dose of 25 kGy of gamma radiation. Do not re-sterilize. Do not use any component from an opened or damaged package. Do not use implants after expiration date.

Caution: Federal law (USA) restricts this device to sale by or on the order of a physician.

Comments regarding this device can be directed to Attn: Regulatory Dept, Biomet Inc., P.O. Box 587, Warsaw, IN 46581 USA, FAX: 574-372-3968

Biomet® and all other trademarks herein are the property of Biomet, Inc. or its subsidiaries.

Authorized Representative: Biomet UK, Ltd.
Waterton Industrial Estate,
Bridgend, South Wales
CF31 3XA, U.K.

Symbol Legend

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>⚠️</td>
<td>Manufacturer</td>
</tr>
<tr>
<td>📅</td>
<td>Date of Manufacture</td>
</tr>
<tr>
<td>🚫</td>
<td>Do Not Reuse</td>
</tr>
<tr>
<td>⚠️</td>
<td>Caution</td>
</tr>
<tr>
<td>🌐</td>
<td>Sterilized using Ethylene Oxide</td>
</tr>
<tr>
<td>🌐</td>
<td>Sterilized using Irradiation</td>
</tr>
<tr>
<td>🌐</td>
<td>Sterile</td>
</tr>
<tr>
<td>🌐</td>
<td>Sterilized using Aseptic Processing Techniques</td>
</tr>
<tr>
<td>🌐</td>
<td>Sterilized using Steam or Dry Heat</td>
</tr>
<tr>
<td>⏳️</td>
<td>Use By</td>
</tr>
<tr>
<td>🌐</td>
<td>WEEE Device</td>
</tr>
<tr>
<td>📚</td>
<td>Catalogue Number</td>
</tr>
<tr>
<td>📚</td>
<td>Batch Code</td>
</tr>
<tr>
<td>🔥</td>
<td>Flammable</td>
</tr>
<tr>
<td>🌐</td>
<td>Authorized Representative in the European Community</td>
</tr>
</tbody>
</table>