Over 1 million times per year, Biomet helps one surgeon provide personalized care to one patient.

The science and art of medical care is to provide the right solution for each individual patient. This requires clinical mastery, a human connection between the surgeon and the patient, and the right tools for each situation.

At Biomet, we strive to view our work through the eyes of one surgeon and one patient. We treat every solution we provide as if it’s meant for a family member.

Our approach to innovation creates real solutions that assist each surgeon in the delivery of durable personalized care to each patient, whether that solution requires a minimally invasive surgical technique, advanced biomaterials or a patient-matched implant.

When one surgeon connects with one patient to provide personalized care, the promise of medicine is fulfilled.
CERAMENT™ BONE VOID FILLER

I. Indications

Voids or gaps not intrinsic to the stability of the bone structure.

Intended use

CERAMENT™ BONE VOID FILLER is a ceramic bone void filler intended only for orthopedic applications as a filler for gaps and voids that are not intrinsic to the stability of the bony structure.

CERAMENT™ BONE VOID FILLER is indicated to be injected into bony voids or gaps in the skeletal system, i.e. extremities, pelvis, and spine (only during open surgery in spine). These defects may be surgically created osseous defects or osseous defects from traumatic injury to the bone.

CERAMENT™ BONE VOID FILLER provides a bone void filler that resorbs and is replaced by bone during the healing process. CERAMENT™ BONE VOID FILLER is not intended for use in load bearing applications such as vertebroplasty or kyphoplasty.

Contraindications

- Known hyperthyroidism or autonomous thyroid adenoma.
- History of serious reaction to iodine based radio contrast agents.
- Local infection at the site of implantation.
- Pregnancy and breastfeeding.
- Load bearing applications.

II. Overview

CERAMENT™ BONE VOID FILLER is a biphasic injectable bone graft substitute. It is synthetically made and has one osteoconductive component, hydroxyapatite, and one resorbable component, calcium sulfate.

Bone substitutes based on hydroxyapatite and calcium sulfate offer good potential to be used as bone material for clinical applications due to their:

a) osteoconductivity, with an ability to act as a matrix for cells
b) injectability, making it possible to utilize in minimally invasive surgery techniques
c) adequate strength and slow resorption

CERAMENT™ BONE VOID FILLER also includes a radio-opacity enhancing component which makes the material suitable in applications guided by fluoroscopy, including mini-invasive surgery.

The material is easy to mix and handle. It hardens in situ and all in vivo studies have shown good biocompatibility, adequate resorption rate and osseointegration.1,6

By filling a bone defect with CERAMENT™ BONE VOID FILLER, which contains 40% bone mineral, i.e. hydroxyapatite, three important needs for bone healing are fulfilled:

a) The void is filled with a bone mineral and can therefore not be invaded by fibrous tissue
b) CERAMENT™ BONE VOID FILLER hardens in situ and augments the bone
c) CERAMENT™ BONE VOID FILLER acts as a scaffold for the ingrowth of bone

When bone-forming cells are in direct contact with CERAMENT™ BONE VOID FILLER, the hydroxyapatite particles get incorporated into the newly formed bone. After treatment with CERAMENT™ BONE VOID FILLER, complete bone formation is demonstrated within 6-12 months in one case study.1
III. Conditions for bone formation

i) Vascularity
Vascular ingrowth and blood supply is critical for bone formation. Blood contains circulating osteoprogenitor cells and extracellular matrix proteins necessary to initiate osteoclast and osteoblast. In a fracture or a bone defect, this cell proliferation initiates cartilage growth followed by immature bone formation. If the mechanical situation is stable, woven and lamellar bone will follow. To activate healing in a void not created by surgery or a recent fracture, it is preferable to provoke bleeding to attract cells and to promote angiogenesis and subsequent bone healing.

ii) Fixation
Excess motion in a fracture or bone defect may interrupt the development of new bone which may lead to fibrous tissue formation instead of bone.

iii) Bone tissue formation
Fracture healing, with bridging of bone defects, occurs if the defect is small enough and the above mentioned conditions are fulfilled. Healing of bone with large gaps often fails because there is no scaffold for the osteoblast to climb on. The healing process in such defects starts from the edges of the defect in order to fill it completely with new bone tissue. If the defect site gets filled by fibrous tissue instead of bone, a non-union may result.

iv) Mineralization
Mineralization and maturation of the bone tissue are the final stages in the bone formation process, and it can only occur if the bone is adequately loaded. Unloaded immature bone tissue will be resorbed by osteoclasts since it is considered “not needed” by the body. However, loading the immature bone tissue will stimulate the remodeling to result in a strong and load-bearing bone structure.

Too strong bone substitute material might be expected to shield the immature bone from the load leading to bone resorption, while a weak bone substitute material might lead to early collapse. It is therefore important to match the strength of the bone substitute to the mechanical demands.

IV. History of bone graft substitutes

i) Calcium sulfate
The use of synthetic bone grafts started over 100 years ago with the implantation of calcium sulfate. The first reported case, where calcium sulfate was used to treat cavities in bone, is from 1892 by Dreesmann in Germany, who operated on eight patients with large bone defects grafting them with β-calcium sulfate hemihydrate.7 Subsequent reports showed good results with complete bone regeneration and concluded that calcium sulfate was biocompatible, did not add complications and was resorbed quickly.8-10

The majority of recent studies have been performed on calcium sulfate pellets produced from hemihydrate with crystals of regular shape and size, i.e. α-calcium sulfate hemihydrate. These pellets show less variation in solubility and resorption.11-13 The most important advantages with calcium sulfate are the excellent biocompatibility and the rapid dissolution rate. However, with the drawback of sometimes failing in the long term, scaffold support is needed for full bone regeneration.14

ii) Calcium phosphate
The most common calcium phosphate compound used in bone grafting is hydroxyapatite (HA; Ca\(_{10}\)(PO\(_4\))\(_6\)(OH)\(_2\)). Its structure is similar to that of the mineral phase of bone and it shows excellent biocompatibility. HA is osteoconductive due to its chemical similarity to natural bone mineral and is also bioactive, i.e. bone chemically binds to it.15,16 A study on the proximal tibia of 30 rabbits demonstrated that HA (50 wt-%) + calcium sulfate was highly osteoconductive, supporting 52% bone formation after 4 weeks and 90% after 24 weeks.17 Although the calcium sulfate component had disappeared after 8 weeks, the HA continued to support bone ingrowth.17 At 24 weeks, the HA particles were surrounded by, and incorporated in, thick trabecular bone.

HA is often synthesised at high temperature (typically above 1800 F) to form granules or blocks, but can also be precipitated from a supersaturated solution of calcium (Ca\(^{2+}\)) and phosphate (PO\(_4^{3-}\)) ions. High temperature treatments provide a more crystallized HA that shows minimum resorption by osteoclast activity and may remain at the implant site for years or even decades.18,19 This may be an advantage for certain applications, but a drawback for others. In younger patients or growing children resorbable implants are, however, preferable since the material is replaced over time by bone tissue.

Due to partial resorption, biphasic calcium phosphate (BCP) has been used.20-24 It may allow for bone ingrowth and mechanical stability at the implant/bone interface, but BCP will not resorb completely.22

*Animal studies are not necessarily indicative of clinical results.
CERAMENT™ BONE VOID FILLER

V. Importance of porosity and chemistry

To achieve bone healing a bone substitute has to be porous to allow penetration of living cells. Blood capillaries, osteoblasts and osteoclasts have to be able to invade the material to allow bone remodeling.

For many years it was believed that only macroporosity (pore size > 100 μm) was critical for good bone ingrowth. More recently the importance of microporosity has been highlighted, with convincing results showing cell attachment on microporous surfaces and a need for microporosity around 1-50 microns to allow penetration of body fluids and subsequent vessel ingrowth. In vivo studies show that manipulation of the microporosity in calcium phosphate bioceramics may accelerate osteointegration, improve the adsorption of proteins and the adhesion and proliferation of human bone cells.

Conclusively, both micro- and macroporosity are important for the bone ingrowth as well as the chemistry of the bone graft substitute.

Ideally, the resorption of an implant material has to correspond to the bone ingrowth rate in order to optimize the healing of the defect:

- Too slow resorption of the implant will obstruct the growth of new bony tissue and will slow down the healing process.
- Too fast resorption of the implant will leave a gap between the implant and the ingrowing bone with a risk of fibrous tissue interpositioning.

The resorbing material leaves space for the bone tissue to grow and the osteoconductive material facilitates bone formation. Eventually this typically results in full transformation of the bone substitute into mature bone.

With CERAMENT™ BONE VOID FILLER there is controlled resorption of CaS to match the rate of bone ingrowth and support new bone growth.

VI. The Science of CERAMENT™ BONE VOID FILLER

i) Biphasic

CERAMENT™ BONE VOID FILLER is an injectable biphasic ceramic material, indicated for the filling of bone voids. CERAMENT™ BONE VOID FILLER consists of a powder which is mixed with a liquid and becomes an injectable paste which hardens in situ. The powder has two components:

- 40 wt% hydroxyapatite (HA)
- 60 wt% α-calcium sulfate hemihydrate

HA is the mineral phase of bone. It is highly osteoconductive in vivo. The HA used in CERAMENT™ BONE VOID FILLER is engineered to be stable. It offers high injectability and gives long term support to the defect. The HA particles form an osteoconductive scaffold augmenting the calcium sulfate to retard its resorption rate. The HA particles are embedded into newly formed bone with no adverse inflammatory responses recorded at the time of publication.

Calcium sulfate is used for its tissue integration and biocompatibility. It has been used in bone repair surgeries for more than 100 years with excellent tissue response. No adverse reactions have been reported during its resorption showing that calcium sulfate degradation products are very unlikely to be harmful for the body. The calcium sulfate used in CERAMENT™ BONE VOID FILLER is of medical grade. It will dissolve and be actively resorbed by osteoclastic activity within 6-12 months. Dissolution of calcium sulfate creates space for new bone growth.

Both the calcium sulfate and the HA component of CERAMENT™ BONE VOID FILLER are synthetically produced to assure high purity and reproducibility.

The ratio 40/60 of HA/calcium sulfate provides maximum osteoconductivity while keeping a strength suitable for augmentation of cancellous bone defects.

The mechanical properties closely match cancellous bone. A too strong and stiff material may cause bone resorption since the force will be transmitted through the material instead of through the bone. It is important to load the treated region adequately for bone to regenerate and remodel.
ii) Injectable

The alpha-form of calcium sulfate hemihydrate delivers much better injectability compared with the beta-form. The alpha-form has a higher density and absorbs less liquid, which also makes the calcium sulfate stronger and gives the material a slower resorption rate. The injectability is also enhanced by the round shape of the HA particles. Round particles flow easily and the injection may be performed without high pressure. The liquid used in CERAMENT™ BONE VOID FILLER, iohexol solution, further increases the lubrication of the powder and ensures that no filter pressing occurs. Filter pressing is a phenomenon seen when particles mixed with liquid are put under pressure, where the material separates and the liquid is pressed out through the particle phase, resulting in dry powder left if in a syringe during injection.

High injectability enables injection through narrow needles and ensures an excellent spread in the trabecular system. It also allows HA particles to be carried into the bone defect. The calcium sulfate component of CERAMENT™ BONE VOID FILLER delivers the osteoconductive HA. It binds the HA particles which is important for subchondral applications and in joint prosthetic revision surgery avoiding the risk for abrasive wear. The liquid component is a water soluble radio-opacity enhancing component called C-TRU™ consisting of iohexol and water. It has been used clinically under the brand name Omnipaque® since the 1980s. By adding a radio-opacity enhancing component to the material, transcortical injections using minimally invasive techniques may be performed effectively. Injection of CERAMENT™ BONE VOID FILLER can thus be followed visually under fluoroscopy which decreases the risk of unrecognized leakage into e.g. the joint space in the presence of intra-articular fracture lines.

Iohexol is a non-ionic radiocontrast agent, that doesn’t metabolize and is cleared from the body through renal excretion.

When mixing the powder with the liquid an injectable and moldable paste is formed. Once the paste hardens it forms a microporous ceramic material designed to facilitate bone formation in the bone void.

iii) Bioactive

CERAMENT™ BONE VOID FILLER is bioactive, which means that a nanolayer of carbonated apatite will spontaneously form on the material surface approximately 1-3 days after implantation (Fig 1). Calcium ions from the calcium sulfate react with phosphate ions from the body fluids and a layer of apatite precipitates on the material surface. This precipitation has also been observed on other highly biocompatible materials like titanium and BioGlass. It basically enhances the direct contact between material and bone because bone cells recognize the apatite layer as bone mineral.

Not all bone graft substitutes are bioactive. Pure calcium sulfate, which always presents with a low pH, does not have the ability of forming this apatite layer. The HA particles are thus needed to induce HA precipitation, which might be explained by a combination of neutralized pH and necessary surface properties not present with calcium sulfate.

Figure 1: A layer of HA has been formed on the surface of CERAMENT™ BONE VOID FILLER. This layer makes the material bioactive, retards the calcium sulfate resorption and enhances the direct contact between material and bone.
VII. Preclinical findings*

i) Biocompatibility and no inflammatory reaction

CERAMENT™| BONE VOID FILLER has been studied in numerous animals, including rats, rabbits, and sheep.33,50-54

In an animal study it has shown good tissue response both in muscle pockets and in bone defects.33 A close contact was found between material and bone tissue in a bone harvest chamber model in rabbits33 (Fig 2), with trabecular bone completely surrounding and embedding the HA particles (Fig 3). No inflammatory reactions or fibrous tissue were observed after 3 and 6 weeks.

The incorporation of the HA particles and fragments of the material, both calcium sulfate and HA, was observed in greater detail in femur defects in rats52 (Fig 4) at 21 days after implantation of CERAMENT™| BONE VOID FILLER.

Figure 2: A close contact was found between CERAMENT™| BONE VOID FILLER (to the left) and new bone tissue (to the right) at 6 weeks post implantation31 of CERAMENT™| BONE VOID FILLER. The new bone tissue invaded CERAMENT™| BONE VOID FILLER and no sharp bone/implant interface was observed.

Figure 3: Bony tissue completely surrounded and embedded the HA particles.

Figure 4: Shows fragments of CERAMENT™| BONE VOID FILLER (star) incorporated in new, immature bone tissue (arrow).

*Animal studies are not necessarily indicative of clinical results.
It was concluded that calcium sulfate in combination with HA supported the formation of new bone that completely surrounded and embedded the HA particles once the calcium sulfate had resorbed.52 The new trabeculae became thicker and denser, which increased the mechanical strength of the newly formed bone as demonstrated by indentation tests (Fig 5).52

![Indentation Force vs. Displacement](image)

Figure 5: Showing the mechanical strength of newly formed bone after CERAMENT™| BONE VOID FILLER implantation vs. normal cancellous bone. Forty-two days after CERAMENT™| BONE VOID FILLER implantation (blue line, top) mechanical strength of the newly formed bone was higher compared to intact cancellous bone (bottom).

ii) Osteoconductivity

Calcium sulfate alone is not an osteoconductive material. Bone will form with time but early results show that fibrous tissue is first formed between the new bone and the remaining material52, probably because of the rapid resorption of the calcium sulfate. HA particles are added to the calcium sulfate based bone substitute to provide osteoconductivity. It has been clearly shown that between 30 and 50\% of HA is necessary to obtain an osteoconductive material that still provides sufficient strength.17 In a study using 40\% HA in calcium sulfate, osteoconductivity was observed in defects in the distal part of rabbit femora.52

iii) Incorporation into bone

The first generation of synthetic bone substitutes consisting of either pure calcium sulfate or pure HA have had limited advantages due to their static behavior. It was thus stated by Hench in 199855 that "we need to shift the emphasis of biomaterial research towards assisting or enhancing the body’s own reparative capacity".

Many calcium phosphate-based bone substitute materials have a too slow resorption rate and are followed by new bone tissue formation through a creeping substitution from the surface towards the center of the defect.56 New bone tissue is only present at the surface of the material and the material remains in the defect center until complete healing occurs, which might take years.1,17,19 The mechanism of action for CERAMENT™| BONE VOID FILLER is different. Through initial microporosity and later macroporosity, early vascularization and invasion of osteoblasts enable a multiple site formation of bone throughout the cured CERAMENT™| BONE VOID FILLER implant.

Immature bone tissue is first formed by the osteoblasts but is later mineralized and remodeled into new trabecular bone.

The bone remodeling process includes both osteoclasts and osteoblasts and they are both seen at the material bone interface.

CERAMENT™| BONE VOID FILLER has been shown to be biocompatible, bioactive and osteoconductive. This was clearly demonstrated by Voor et al.50, implanting CERAMENT™| BONE VOID FILLER in critical size defects in rabbit distal femurs with examination of new bone formation (Fig 6) and defect healing grade (Fig 7) after 3 and 12 weeks. Substantially more bone was formed in the defects filled with CERAMENT™| BONE VOID FILLER compared to those that were left empty.50*

*Animal studies are not necessarily indicative of clinical results.
CERAMENT™ | BONE VOID FILLER

Figure 6 and 7: Both the amount of new bone formation and the healing grade* were greater for CERAMENT™| BONE VOID FILLER filled defect compared to empty at both 3 and 12 weeks. The difference was statistically significant at 12 weeks.

* A grade from 0 to 3 [0=no cellular activity, 1=minimal cellular activity only at the defect boundary, 2=cellular activity with new bone formation at the defect boundary, 3=extensive cellular activity with new bone extending to the defect center] was assigned to each histological section.

VIII. Clinical results

Case 1: Osteotomy after distal radius fracture malunion*

A man (40 years old) was included in a clinical study by Abramo et al. He underwent osteotomy after distal radius fracture malunion.

Fixation was performed using Trimed system. CERAMENT™| BONE VOID FILLER was applied in the gap formed during surgery. Figure A shows the osteotomy directly post-operatively and Figure B shows the same osteotomy one year later. Complete bone healing was achieved and new trabecular and cortical bone were formed where CERAMENT™| BONE VOID FILLER had been implanted.

*Case studies are not necessarily typical of clinical results
Case 2: Treatment of displaced intra-articular calcaneal fracture

A female (54 years old) had open reduction and internal fixation (ORIF) Fig. A.

To avoid loss of calcaneal height of the posterior facet and reduction of Bohler's angle when full weight bearing, surgery was augmented with CERAMENT™ BONE VOID FILLER.

Removal of the plate at 4 months due to pain (no signs of infection) facilitated a bone biopsy which showed early signs of new bone growth Fig B.

At 7 months the patient demonstrates a good result. Fig C & D.

*Credit: Damiano Papadia
Reparto di Ortopedia e Traumatologia
Ospedale, Santa Chiara, Trento, Italy*

Figure A: X-ray immediately post surgery.

Figure B: Histology at 4 months showing new bone growth.

Figure C: X-ray after removal of the plate.

Figure D: Patient full weight bearing.

Case 3: Bicondylar osteoporotic tibial plateau fracture

A female (88 years old) underwent open reduction and internal fixation of angulated, impacted, displaced and unstable left tibial plateau bicondylar fracture, with percutaneous lateral plate application.

CERAMENT™ BONE VOID FILLER was injected to fill resulting void after fracture reduction, achieving restoration of alignment and stability. Fig A & B, pg. 12.

At 18 months patient was clinically improved and ambulating well. Radiographs showed excellent incorporation of the CERAMENT™ BONE VOID FILLER by new bone and a homogenous trabecular pattern and density at the fracture site. Fig C & D, page 12.

Case studies are not necessarily typical of clinical results
IX. Conclusion

CERAMENT™ BONE VOID FILLER is an easy to use, injectable bone graft substitute that has typically transformed into bone within 6-12 months in case studies.²-⁶,3⁵ Unlike bone substitutes based on calcium phosphates alone, and with a slow resorption rate due to creeping substitution starting from the surface, CERAMENT™ BONE VOID FILLER will facilitate bone ingrowth based on its micro- and macro porosity, allowing for multiple islets of de novo bone formation throughout the implant.²-⁶,3⁵ The resorption rate of the material is designed to match the speed of new bone tissue ingrowth. By using calcium sulfate as a complement to the osteoconductive hydroxyapatite, the material resorption will be complete and ultimately get incorporated into the newly formed bone trabeculae.³³,3⁵,5⁰

The bioactivity of the material initiates an endogenous precipitation of hydroxyapatite resulting in a thin layer of apatite on the implant surface³⁶, which enhances the material-bone cell contact³⁸ and retards the calcium sulfate resorption.³⁶ New bone has not only been deposited on the outside of the material but the bone generation has occurred at multiple sites throughout the material²-⁶, ³⁵, which accelerates the transformation of CERAMENT™ BONE VOID FILLER into bone.

- Biphasic, providing osteoconductivity and complete resorption
- Hydroxyapatite provides contact for ingrowth
- Hydroxyapatite makes the material bioactive
- Hydroxyapatite gets completely incorporated into the bone and potentially strengthens it²-⁶, ³⁵
- Remodels completely
- Proven to be effective in multiple case studies²-⁶, ³⁵
- Can be used at metal-bone interfaces
- Will resorb into both cancellous and cortical bone
- Easy to use
- Radiopaque to facilitate injection
- Bone regeneration has occurred everywhere in the material, not only on the surface²-⁶, ³⁵

*Case studies are not necessarily typical of clinical results

X. References (cont.)

44. Almen T: Development of Nonionic Contrast-Media Investigative Radiology 20:S2-S9, 1985

