Biomet Orthopedics
56 East Bell Drive
P.O. Box 587
Warsaw, Indiana 46581 USA

01-50-0944
Date: 2010-06

Biomet® Shoulder Joint Replacement Prostheses

ATTENTION OPERATING SURGEON

DESCRIPTION
Biomet manufactures a variety of shoulder joint replacement prostheses intended for partial or total shoulder joint arthroplasty for use in cemented and uncemented biological fixation applications. Shoulder joint replacement components include humeral stems, humeral heads, and glenoid components. Components are available in a variety of designs and size ranges for both primary and revision applications. Specialty components include glenoid screws, centering sleeves, taper adaptors, and bipolar heads.

MATERIALS

- **Humeral Stems**: CoCrMo Alloy or Titanium Alloy
- **Humeral Head**: CoCrMo Alloy/ Titanium Alloy
- **Glenoid Components**: Ultra-High Molecular Weight Polyethylene (UHMWPE) /Tantalum/Titanium Alloy/ 316 LVM Stainless Steel / CoCrMo Alloy
- **Glenoid Screws**: Titanium Alloy
- **Centering Sleeves**: Polyethylene(methacrylate (PMMA)
- **Positioning Sleeves**: Polyethylene(methacrylate (PMMA)
- **Bipolar Heads**: CoCrMo Alloy / UHMWPE / Titanium Alloy
- **Surface Coating**: Titanium Alloy/ Hydroxyapatite (HA)
- **Taper Adaptor**: CoCrMo Alloy or Titanium Alloy

INDICATIONS
1. Non-inflammatory degenerative joint disease including osteoarthritis and avascular necrosis.
2. Rheumatoid arthritis.
3. Revision where other devices or treatments have failed.
5. Fractures of the proximal humerus, where other methods of treatment are deemed inadequate.
6. Difficult clinical management problems, including cuff arthropathy, where other methods of treatment may not be suitable or may be inadequate.

Humeral components with a MacroBond™ surface coating are indicated for either cemented or uncemented press-fit applications.

Humeral/glenoid components with a porous coated surface coating are indicated for either cemented or uncemented biological fixation applications. (Metal backed glenoid components offer optional screw fixation).

Glenoid components with Hydroxyapatite (HA) coating applied over the porous coating are indicated only for uncemented biological fixation applications. (Metal backed glenoid components offer optional screw fixation).

Humeral components with a non-coated (Interlok™) surface are indicated for cemented application only.

Polyethylene glenoid components not attached to a metal back are indicated for cemented application only.

The Comprehensive™ Modular Hybrid Glenoid is intended to be implanted with bone cement. The optional porous titanium peg may be inserted **without** bone cement. The optional polyethylene peg should be inserted **with** bone cement.

The Comprehensive™ Humeral Positioning Sleeves are for cemented use only and are intended for use with the Comprehensive™ Fracture Stem.

The Comprehensive™ Shoulder Stems (Fracture, Primary and Revision) are intended for use with the Bio-Modular™ Humeral Heads and glenoid components and Versa-Dial™ Humeral Heads.

The Versa-Dial™ Humeral Head Prosthesis is intended for use only with the Comprehensive™ Shoulder Stems (Fracture, Primary and Revision), the Bio-Modular™ Shoulder Stems, the glenoid components of the Bio-Modular™ Shoulder System, and the glenoid components of the Comprehensive™ Shoulder System.

In addition to those specified above, the Proximal Shoulder Replacement prostheses are indicated for use in oncology applications, complex humeral fractures and revisions.

When a humeral stem and/or Versa-Dial™ Taper Adapter is being used for a reverse shoulder application, the user should refer to the package insert (01-50-0903) continued with the reverse shoulder components for additional information, including alternate indications.

CONTRAINDICATIONS
Absolute contraindications include infection, sepsis, and osteomyelitis.

Relative contraindications include:
1. Uncooperative patient or patient with neurologic disorders who is incapable or unwilling to follow directions.
2. Osteoporosis.
3. Metabolic disorders which may impair bone formation.
4. Osteomalacia.
5. Distant foci of infections which may spread to the implant site.
6. Rapid joint destruction, marked bone loss or bone resorption apparent on roentgenogram.

WARNINGS
Improper selection, placement, positioning, alignment and fixation of the implant components may result in unusual stress conditions which may lead to subsequent reduction in the service life of the prosthetic components. The use of a glenoid prosthesis in patients with a deficient rotator cuff could increase the risk of glenoid component loosening due to non-anatomic loading conditions. Malalignment of the components or inaccurate implantation can lead to excessive wear and/or failure of the implant or procedure. Inadequate preclosure cleaning (removal of surgical debris) can lead to excessive wear. Use clean gloves when handling implants. Laboratory testing indicates that implants subjected to body fluids, surgical debris or fatty tissue have lower adhesion strength to cement than implants handled with clean gloves. Improper preoperative or intraoperative implant handling or damage (scratches, dents, etc.) can lead to crevice corrosion, fretting, fatigue fracture and/or excessive wear. Do not modify implants. The surgeon is to be thoroughly familiar with the implants and instruments, prior to performing surgery.

1. Uncemented glenoid components should be used only when there is good quality bone and no significant shoulder instability.
2. Disassociation of the humeral head component from the humeral stem component has been reported. Failure to properly align and completely seat the components together can lead to disassociation. Thoroughly clean and dry tapers prior to attachment of modular head component to avoid crevice corrosion and improper seating.
3. Dislocation of the bipolar shoulder component has been reported. Closed reduction should be attempted with caution to prevent disassociation of the bipolar component. Do not use excessive force during closed reduction. The bipolar component may impinge against the glenoid component.
4. Care is to be taken to assure complete support of all parts of the device embedded in bone cement to prevent stress concentrations that may lead to failure of the procedure. Complete preclosure cleaning and removal of bone cement debris, metallic debris and other surgical debris at the implant site is critical to minimize wear of the implant articulating surfaces. Implant fracture due to cement failure has been reported.
5. The use of Bio-Modular™ MI stems and the shorter Comprehensive™ (micro and mini) primary stems is not recommended for fractures of the proximal humerus.
6. Patient smoking may result in delayed healing, non-healing and/or compromised stability in or around the placement site.

Biomet® joint replacement prostheses provide the surgeon with a means of reducing pain and restoring function for many patients. While these devices are generally successful in attaining these goals, they cannot be expected to withstand the activity levels and loads of normal healthy bone and joint tissue.
Accepted practices in postoperative care are important. Failure of the patient to follow postoperative care instructions involving rehabilitation can compromise the success of the procedure. The patient is to be advised of the limitations of the reconstruction and the need for protection of the implants from full load bearing until adequate fixation and healing have occurred. Excessive activity, trauma and excessive weight and excessive weight bearing have been implicated with premature failure of the implant by loosening, fracture, and/or wear. Loosening of the implants can result in increased production of wear particles, as well as accelerate damage to bone making successful revision surgery more difficult. The patient is to be made aware and warned of general surgical risks, possible adverse effects as listed, and to follow the instructions of the treating physician, including follow-up visits.

PRECAUTIONS
Patient selection factors to be considered include: 1) need to obtain pain relief and improve function, 2) ability and willingness of the patient to follow instructions, including control of weight and activity levels, 3) a good nutritional state of the patient and 4) the patient must have reached full skeletal maturity.

Specialized instruments are designed for Biomet® joint replacement systems to aid in the accurate implantation of the prosthetic components. The use of instruments or implant components from other systems can result in inaccurate fit, incorrect sizing, excessive wear and device failure. Intraoperative fracture or breaking of instruments has been reported. Surgical instruments are subject to wear with normal usage. Instruments, which have experienced extensive use or excessive force, are susceptible to fracture. Surgical instruments should only be used for their intended purpose. Biomet recommends that all instruments be regularly inspected for wear and disfigurement.

Do not reuse implants. While an implant may appear undamaged, previous stress may have created imperfections that would reduce the service life of the implant. Do not treat patients with implants that have been, even momentarily, placed in a different patient.

POSSIBLE ADVERSE EFFECTS
1. Material sensitivity reactions. Implantation of foreign material in tissues can result in histological reactions involving various sizes of macrophages and fibroblasts. The clinical significance of this effect is uncertain, as similar changes may occur as a precursor to or during the healing process. Particulate wear debris and discoloration from metallic and polyethylene components of joint implants may be present in adjacent tissue or fluid. It has been reported that wear debris may initiate a cellular response resulting in osteolysis or osteoelasticity may be a result of loosening of the implant.
2. Early or late postoperative infection and allergic reaction.
3. Intraoperative bone perforation or fracture may occur, particularly in the presence of poor bone stock caused by osteoporosis, bone defects from previous surgery, bone resorption, or while inserting the device.
4. Loosening or migration of the implants can occur due to loss of fixation, trauma, malalignment, bone resorption and/or excessive activity.
5. Periarticular calcification or ossification, with or without impediment of joint mobility.
6. Inadequate range of motion due to improper selection or positioning of components.
7. Undesirable shortening of limb.
8. Dislocation and subluxation due to inadequate fixation and improper positioning. Muscle and fibrous tissue laxity can also contribute to these conditions.
9. Fatigue fracture of component can occur as a result of loss of fixation, strenuous activity, malalignment, trauma, non-union, or excessive weight.
10. Fretting and crevice corrosion can occur at interfaces between components.
11. Wear and/or deformation of articulating surfaces.
13. Intraoperative or postoperative bone fracture and/or postoperative pain.

Intraoperative and early postoperative complications can include: (1) damage to blood vessels, (2) temporary or permanent nerve damage resulting in pain or numbness to the affected limb, (3) cardiovascular disorders including venous thrombosis, pulmonary embolism or myocardial infarction, (4) hematoma, and (5) delayed wound healing.

MRI Information
The effects of the MR environment have not been determined for this device. This device has not been tested for heating or migration in the MR environment.

STERILITY
Prosthetic components are sterilized by exposure to a minimum dose of 25 kGy of gamma radiation. Single Use Only. Do not resterilize. Do not use any component from an opened or damaged package. Do not use implants after expiration date.

Caution: Federal law (USA) restricts this device to sale by or on the order of a physician.

Comments regarding this device can be directed to Attn: Regulatory Dept., Biomet, Inc., P.O. Box 587, Warsaw, IN 46581 USA, FAX: 574-372-3968.

All other trademarks herein are the property of Biomet, Inc. or its subsidiaries unless otherwise indicated.

Authorized Representative: Biomet U.K., Ltd.
Waterton Industrial Estate
Bridgend, South Wales
CF31 3XA, U.K.

<table>
<thead>
<tr>
<th>Symbol Legend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
</tr>
<tr>
<td>Date of Manufacture</td>
</tr>
<tr>
<td>Do Not Reuse</td>
</tr>
<tr>
<td>Caution</td>
</tr>
<tr>
<td>Sterile using Ethylene Oxide</td>
</tr>
<tr>
<td>Sterile using Irradiation</td>
</tr>
<tr>
<td>Sterile</td>
</tr>
<tr>
<td>Sterile using Aseptic Processing Techniques</td>
</tr>
<tr>
<td>Sterile using Steam or Dry Heat</td>
</tr>
<tr>
<td>Use By</td>
</tr>
<tr>
<td>WEEE Device</td>
</tr>
<tr>
<td>Catalogue Number</td>
</tr>
<tr>
<td>Batch Code</td>
</tr>
</tbody>
</table>
Flammable

Authorized Representative in the European Community