The Taperloc® Microplasty™ Hip System is the next dimension in the evolution of Biomet’s flat tapered wedge design philosophy. The Taperloc® Microplasty™ Hip builds on the strong clinical heritage of the proven Taperloc® Hip System and incorporates new design features to address the growing demand for bone conserving and minimally invasive options in total hip arthroplasty.

The Taperloc® Family

Introduced in 1982, the Taperloc® Hip System has provided over 20 years of unmatched clinical results. Building upon its clinical heritage, the Taperloc® family continues to evolve. The Taperloc® Microplasty™ stem, the latest introduction to the family, allows surgeons to address the growing demands for minimally invasive techniques while still maintaining the proven clinical history of the Taperloc® stem.

Offset Options

Provide enhanced stability without lengthening the leg

Taperloc® Standard Stem

The Taperloc® stem was introduced in 1982 and designed after the European philosophy of a flat tapered wedge. By combining excellent clinical success and durability for the last 25 years, the Taperloc® hip continues to deliver consistent, reproducible results.
Taperloc® Reduced Distal Stem

The Taperloc® Reduced Distal stem was added to the Taperloc® family in 2002 to address femurs with a proximal/distal mismatch, thereby reducing the potential for thigh pain.

Taperloc® Microplasty™ Stem

As the latest introduction to the Taperloc® family, the Taperloc® Microplasty™ stem was introduced in 2007 and has been shortened 35mm from the standard Taperloc® stem. Its reduced length can better address minimally invasive techniques, provide an alternative to femoral resurfacing and potentially avoid the need for a custom implant for cases in which existing hardware may prevent the use of a standard length stem.
BALANCE® MICROPLASTY™ STEM

ANATOMIC FIT AND FILL, BONE AND TISSUE CONSERVING DESIGN

The Balance® Microplasty™ Hip System builds on the foundation of the Balance® Hip stem, which is the only Biomet® press-fit stem to combine anterior build-up proximally with a proven bi-planar taper. It incorporates an anatomic fit and fill geometry with a bone conserving, tissue sparing design to address the growing need for minimally invasive options in total hip arthroplasty.

Anatomic Neck Design
Five degrees of anteversion for anatomic fit

The Balance® Family
Introduced in 1997, the Balance® Hip System was designed to allow immediate post-op weight bearing. Its press-fit stems feature proximal anatomic fit and fill and bi-planar taper geometry, as well as three point fixation and a five degree anteverted neck. The Balance® family now includes the Balance® Microplasty™ Stem, which incorporates the heritage of the standard Balance® Hip stem in a reduced length, minimally invasive design.
Proximal Fit and Fill Design
Six degree anterior build-up allows potential for immediate weight bearing

PPS® Coating
Allows for initial scratch-fit stability and bone ingrowth

Reduced Length
Bone conserving design is conducive to minimally invasive techniques and provides an alternative to hip resurfacing

Balance® Standard Stem
The Balance® stem was introduced in 1997 and features an anatomic fit and fill geometry designed to decrease the risk of subsidence and encourage proximal offloading to help decrease stress shielding. It also features a six degree proximal anterior build-up for maximum A/P fill. Due to implant design, patients are anticipated to achieve full weight bearing the day after surgery.

Balance® Microplasty Stem
The Balance® Microplasty™ stem was introduced in 2007 and incorporates the design philosophy of the standard Balance® stem featuring an anatomic fit and fill geometry and bi-planar taper in a reduced length. It utilizes a bone conserving, tissue sparing design for minimally invasive total hip arthroplasty. Its reduced length may avoid the need for a custom implant for cases in which existing hardware may prevent the use of a standard length stem.
ACETABULAR OPTIONS

COMBINING PROVEN CLINICAL HERITAGE
WITH REVOLUTIONARY ACETABULAR TECHNOLOGY

BIOLOX®*delta Ceramic Femoral Heads
Composed of aluminum, zirconium, chromium and other oxides to provide for low wear. Available in 28, 32 and 36mm heads.

E-Poly™ HXLPE
The only polyethylene infused with vitamin E to provide strength and true oxidative protection without remelting.6–8

Regenerex™ Ringloc®+ Acetabular Shell
Advanced porous metal technology coupled with next generation locking technology. Combine with E-Poly™ HXLPE for the optimal combination of fixation and low wear.
M2a-Magnum™ Large Metal Articulation
Provides stability and ROM of a large head (38–60mm) in acetabulums as small as 44mm, reducing the chance for dislocation.

Modular Design
Modular inserts reduce head inventory while maintaining six neck length options (-6 to +9mm).

PPS® Coating
Twice the rotational stability of beads and clinically proven as a bone friendly ingrowth surface.

M2a™ Precision
Precise M2a™ Metal-on-Metal implant tolerancing and 100 percent quality control enable low wear rates and fluid film lubrication.
References

All trademarks belong to Biomet Manufacturing Corp. unless noted otherwise.

BIOLOX® is a trademark of Cerasiv GmbH.

This material is intended for the sole use and benefit of the Biomet sales force and physicians. It is not to be redistributed, duplicated or disclosed without the express written consent of Biomet.

For product information, including indications, contraindications, warnings, precautions and potential adverse effects, see the package insert and Biomet's website.