This brochure is presented to demonstrate the surgical technique of Hill Hastings II, M.D. Biomet, as the manufacturer of this device, does not practice medicine and does not recommend this device or technique. Each surgeon is responsible for determining the appropriate device and technique to utilize on each individual patient.

PREOPERATIVE PLANNING
Place two ulna bearing kits in a freezer for a minimum of three hours. Freezing causes the bearing to constrict, making it easier to insert into the ulna ring. The temperature should be between -13° F and 14° F (-25° C and -10° C). A lower freezer temperature will increase the handling time of the bearing. Do not remove the bearing from the freezer until ready for assembly, as it will begin to expand immediately and reach full expansion within two minutes of removal. The second bearing kit should remain in the freezer as reserve.

BEARING REMOVAL
Insert the threaded end of the bearing removal tool through the center hole of the ulna component. Push the T-handle toward the ulna component as far as possible, turning the T-handle to allow the threaded shaft to pass through the bearing if necessary. The ledge of the ulna component should fit into the recess on the body of the bearing removal tool (Figure 1). With the jagged end toward the polyethylene, tighten the end cap onto the bearing removal tool (Figure 2).
While holding the body of the removal tool, rotate the T-handle clockwise. The polyethylene will be pulled from within the ulna component onto the threaded shaft of the removal tool. Continue rotating until the polyethylene is removed from the ulna stem and the locking pin falls free (Figure 3). Discard the pin and polyethylene; irrigate and remove any small polyethylene particles.

NEW BEARING INSERTION

Remove one ulna bearing revision kit from the freezer. The widest portion of the bearing should face toward the widest portion of the ulna ring (Figure 4). Locate the four notches on the outer edge of the bearing and align the cylindrical notch (pin groove) posteriorly.
Align the three shallow notches in the bearing with the three tabs inside the ulna stem ring (Figure 5). Insert the bearing into the middle of the stem ring by pushing it until the bearing freely spins/rotates. Rotate the bearing until the cylindrical notch (pin groove) aligns with the pin groove of the ulna stem (Figure 6).

The bearing rotation tool may be used to rotate the bearing if it does not spin freely when inserted into the ulna ring. To use, insert the tool from the medial side of the bearing, allowing the long metal tab to slide into the groove on the bearing reserved for the locking pin (Figure 7). Rotate the bearing until the cylindrical notch in the bearing is aligned with the pin groove of the ulna stem (Figure 8).
PIN INSERTION

Insert the ulna pin inserter body through the bearing from the medial side until the ledge of the ulna component fits into the recess on the body of the pin inserter. Secure the ulna component into place using the lock body and lock nut. The push rod should be backed out enough to place the locking pin into the small canal (Figure 9). The tapered end of the pin should be facing toward the ulna component (Figure 10).

The hole in the lock body, groove in the ulna component and pin should be aligned (Figure 11). Attach the T-handle and turn clockwise to drive the pin into the ulna component (Figure 12). Ensure the pin does not become dislodged during insertion. Once the pin is fully inserted into the ulna component, bearing exchange is complete.
<table>
<thead>
<tr>
<th>Product</th>
<th>Part Number</th>
<th>Description</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>114800*</td>
<td>Discovery® Ulna Bearing Revision Kit</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>414892**</td>
<td>Discovery® T-handle</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>414922**</td>
<td>Screwdriver Handle</td>
<td>2.0/2.7mm</td>
</tr>
<tr>
<td></td>
<td>414923**</td>
<td>X-lock Standard Blade (Screwdriver Shaft)</td>
<td>2.4mm</td>
</tr>
<tr>
<td></td>
<td>414950**</td>
<td>Discovery® Bearing Removal Tool</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>414951**</td>
<td>Discovery® Bearing Ulna Pin Inserter</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>414952**</td>
<td>Discovery® Bearing Rotation Tool</td>
<td>—</td>
</tr>
</tbody>
</table>

*Contains one polyethylene bearing and locking pin

**Available from loaners
Biomet® Elbow Joint Replacement Prostheses

ATTENTION OPERATING SURGEON

DESCRIPTION
Biomet manufactures a variety of elbow joint replacement prostheses intended for primary and revision joint arthroplasty for use in cemented applications. Elbow joint replacement components include humeral and ulnar components, and in some instances, hinge components. Components are available in a variety of surface finishes including bond coat (a thin layer of titanium plasma spray), porous titanium plasma spray and Interlok® finish.

Materials:
- Humeral stem: CoCrMo alloy or titanium alloy
- Ulnar stem: CoCrMo alloy or titanium alloy
- Bearing components: Ultra-High Molecular Weight Polyethylene (UHMWPE)
- Axes: CoCrMo alloy
- Connectors: CoCrMo alloy
- Surface coating: Titanium alloy
- Locking clips/screws: Titanium alloy

INDICATIONS
1. Non-inflammatory degenerative joint disease including osteoarthritis and avascular necrosis.
2. Rheumatoid arthritis.
3. Revision where other devices or treatments have failed.
5. Treatment of acute or chronic fractures with humeral epicondyle involvement, which are unmanageable using other treatment methods.

Contraindications:
- Absolute contraindications include: 1) uncooperative patient or patient with neurologic disorders who is incapable of following directions, 2) osteoporosis, 3) metabolic disorders which may impair bone formation, 4) osteomalacia, 5) distant foci of infections which may spread to the implant site, and 6) rapid joint destruction, marked bone loss or bone resorption apparent on roentgenogram.

WARNINGS
Improper selection, placement, positioning, alignment and fixation of the implant components may result in unusual stress conditions which may lead to subsequent reduction in the service life of the prosthetic components. Malalignment of the components or inaccurate implantation can lead to excessive wear and/or failure of the implant or procedure. Inadequate preclosure cleaning (removal of surgical debris) can lead to excessive wear. Improper preclosure or intraoperative implant handling or damage (scratches, dents, etc.) can lead to crevice corrosion, fretting, fatigue fracture and/or excessive wear. Thoroughly clean and dry all connectors, including tapers prior to attachment of modular components to avoid crevice corrosion and improper seating.

CONTRAINDICATIONS
- Absolute contraindications include: 1) uncooperative patient or patient with neurologic disorders who is incapable of following directions, 2) osteoporosis, 3) metabolic disorders which may impair bone formation, 4) osteomalacia, 5) distant foci of infections which may spread to the implant site, and 6) rapid joint destruction, marked bone loss or bone resorption apparent on roentgenogram.

WARNINGS
Improper selection, placement, positioning, alignment and fixation of the implant components may result in unusual stress conditions which may lead to subsequent reduction in the service life of the prosthetic components. Malalignment of the components or inaccurate implantation can lead to excessive wear and/or failure of the implant or procedure. Inadequate preclosure cleaning (removal of surgical debris) can lead to excessive wear. Improper preclosure or intraoperative implant handling or damage (scratches, dents, etc.) can lead to crevice corrosion, fretting, fatigue fracture and/or excessive wear. Thoroughly clean and dry all connectors, including tapers prior to attachment of modular components to avoid crevice corrosion and improper seating.

CONTRAINDICATIONS
- Absolute contraindications include: 1) uncooperative patient or patient with neurologic disorders who is incapable of following directions, 2) osteoporosis, 3) metabolic disorders which may impair bone formation, 4) osteomalacia, 5) distant foci of infections which may spread to the implant site, and 6) rapid joint destruction, marked bone loss or bone resorption apparent on roentgenogram.

WARNINGS
Improper selection, placement, positioning, alignment and fixation of the implant components may result in unusual stress conditions which may lead to subsequent reduction in the service life of the prosthetic components. Malalignment of the components or inaccurate implantation can lead to excessive wear and/or failure of the implant or procedure. Inadequate preclosure cleaning (removal of surgical debris) can lead to excessive wear. Improper preclosure or intraoperative implant handling or damage (scratches, dents, etc.) can lead to crevice corrosion, fretting, fatigue fracture and/or excessive wear. Thoroughly clean and dry all connectors, including tapers prior to attachment of modular components to avoid crevice corrosion and improper seating.

POSSIBLE ADVERSE EFFECTS
- Wear debris may initiate a cellular response resulting in osteolysis or osteolysis may be a result of loosening of the implant.
- Fatigue fracture of component can occur as a result of loss of fixation, improper positioning, trauma, excess range of motion, and/or excessive activity. Muscle and fibrous tissue laxity can also contribute to these conditions.
- Fatigue fracture can occur as a result of loss of fixation, improper positioning, trauma, excess range of motion, and/or excessive activity. Muscle and fibrous tissue laxity can also contribute to these conditions.

STERILITY
Prosthetic components are sterilized by exposure to a minimum dose of 25 kGy of gamma radiation. Do not resterilize. Do not use any component from an opened or damaged package. Do not use implants after expiration date has passed.

Caution: Federal law (USA) restricts this device to sale by or on the order of a physician.

BIOMET® ELBOW JOINT REPLACEMENT

Biomet Orthopedics, Inc. 01-50-0901
P.O. Box 587 Date: 05/07
56 East Bell Drive
Warsaw, Indiana 46581 USA

The information contained in this package insert was current on the date this brochure was printed. However, the package insert may have been revised after that date. To obtain a current package insert, please contact Biomet at the contact information provided herein.
Discovery® is a trademark of Biomet Manufacturing Corp.

This material is intended for the sole use and benefit of the Biomet sales force and physicians. It is not to be redistributed, duplicated or disclosed without the express written consent of Biomet.

For product information, including indications, contraindications, warnings, precautions and potential adverse effects, see the package insert herein and Biomet’s website.