Patient Risk Information

Biomet Hip Joint Replacement Prostheses

The indications, contraindications, warnings, and possible adverse effects are discussed below. For further information about the potential benefits vs. risks associated with total hip replacement and how they may affect the outcome in your particular case, please consult your doctor.

INDICATIONS
You may be a candidate for total hip replacement if your doctor indicates you have any of the following conditions:

1. Noninflammatory degenerative joint disease including osteoarthritis and avascular necrosis
2. Rheumatoid arthritis
3. Functional deformity
4. Non-union, femoral neck fracture, and trochanteric fractures of the proximal femur with head involvement, unmanageable using other techniques
5. The need for a revision total hip arthroplasty

Patient selection factors to be considered include: 1) need to obtain pain relief and improve function, 2) ability and willingness of the patient to follow instructions, including control of weight and activity level, 3) a good nutritional state of the patient, and 4) the patient must have reached full skeletal maturity.

CONTRAINDICATIONS
You are not be a candidate for total hip replacement if your doctor determines that you have any of the following conditions: Infection, sepsis and osteomyelitis. You may not be a candidate for total hip replacement if your doctor determines that you exhibit any of the following: 1) uncooperative patient or patient with neurologic disorders who are incapable of following directions, 2) osteoporosis, 3) metabolic disorders which may impair bone formation, 4) osteomalacia, 5) distant foci of infections which may spread to the implant site, 6) rapid joint destruction, marked bone loss or bone resorption apparent on roentgenogram, 7) vascular insufficiency, muscular atrophy, or neuromuscular disease.

WARNINGS
Biomet joint replacement prostheses provide the surgeon with a means of reducing pain and restoring function for many patients. While these devices are generally successful in attaining these goals they cannot be expected to withstand the activity levels and loads of normal healthy bone and joint tissue.

Accepted practices in postoperative care are important. Failure of the patient to follow postoperative care instructions involving rehabilitation can compromise the success of the procedure. The patient is to be advised of the limitation of the reconstruction and the need for protection of the implants from full load bearing until adequate fixation and healing have occurred. Excessive activity, trauma and weight gain have been implicated with premature failure of the implant by loosening, fracture, and/or wear. Loosening of the implants can result in increased production of wear particles, as well as accelerate damage to bone making successful revision surgery more difficult. The patient is to be made aware and warned of general surgical risks, possible adverse effects as listed, and to follow the instructions of the treating physician including follow-up visits.
POSSIBLE ADVERSE EFFECTS

1. Material sensitivity reactions. Implantation of foreign material in tissues can result in histological reactions involving various sizes of macrophages and fibroblasts. The clinical significance of this effect is uncertain, as similar changes may occur as a precursor to or during the healing process. Particulate wear debris and discoloration from metallic and polyethylene components of joint implants may be present in adjacent tissue or fluid. It has been reported that wear debris may initiate a cellular response resulting in osteolysis or osteolysis may be a result of loosening of the implant.

2. Early or late postoperative, infection, and allergic reaction.

3. Intraoperative bone perforation or fracture may occur, particularly in the presence of poor bone stock caused by osteoporosis, bone defects from previous surgery, bone resorption, or while inserting the device.

4. Loosening or migration of the implants can occur due to loss of fixation, trauma, malalignment, bone resorption, or excessive activity.

5. Periarticular calcification or ossification, with or without impediment of joint mobility.

6. Inadequate range of motion due to improper selection or positioning of components.

7. Undesirable shortening of limb.

8. Dislocation and subluxation due to inadequate fixation and improper positioning. Muscle and fibrous tissue laxity can also contribute to these conditions.

9. Fatigue fracture of component can occur as a result of loss of fixation, strenuous activity, malalignment, trauma, non-union, or excessive weight.

10. Fretting and crevice corrosion can occur at interfaces between components.

11. Wear and/or deformation of articulating surfaces.

12. Trochanteric avulsion or non-union as a result of excess muscular tension, early weight bearing, or inadequate reattachment.

13. Problems of the knee or ankle of the affected limb or contralateral limb aggravated by leg length discrepancy, too much femoral medialization or muscle deficiencies.


15. Metal on metal articulating surfaces have limited clinical history. Although mechanical testing demonstrates that metal on metal articulating surfaces produce a relatively low amount of particles, the total amount of particulate produced remains undetermined. Elevated metal ion levels have been reported with metal on metal articulating surfaces. Because of the limited clinical and preclinical experience, the long-term biological effects of the particulate and metal ions are unknown.